
Melting of persistent double-stranded polymers

Sahand Jamal Rahi,* Mark Peter Hertzberg, and Mehran Kardar
Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

�Received 17 June 2008; published 12 November 2008�

Motivated by recent DNA-pulling experiments, we revisit the Poland-Scheraga model of melting a double-
stranded polymer. We include distinct bending rigidities for both the double-stranded segments and the single-
stranded segments forming a bubble. There is also bending stiffness at the branch points between the two
segment types. The transfer matrix technique for single persistent chains is generalized to describe the branch-
ing bubbles. Properties of spherical harmonics are then exploited in truncating and numerically solving the
resulting transfer matrix. This allows efficient computation of phase diagrams and force-extension curves
�isotherms�. While the main focus is on exposition of the transfer matrix technique, we provide general
arguments for a reentrant melting transition in stiff double strands. Our theoretical approach can also be
extended to study polymers with bubbles of any number of strands, with potential applications to molecules
such as collagen.
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I. INTRODUCTION

Single-molecule micromanipulation techniques have
opened up new opportunities for measurements and studies
of polymers. Smith et al. pioneered �1� stretching experi-
ments of double-stranded DNA �dsDNA� and, along with
others, observed that at high forces of about 65 pN, DNA
extends to 1.7 times its contour length �2–6�. These investi-
gators believe that the stretching transforms B-DNA, which
is DNA in its natural state, to a new, extended state, named
S-DNA. Modeling studies and simulations were carried out
to characterize this putative new state of DNA �7–9�. Subse-
quently, Storm and Nelson �10� proposed a statistical model
of DNA as a discrete persistent chain �DPC� with two mono-
mer flavors of different lengths and stiffnesses, and fit their
parameters successfully to experimental data. However, Wil-
liams, Rouzina, Bloomfield, and co-workers have argued on
the basis of their own experiments that S-DNA is not a new
state of the molecule, but merely DNA that is melted to two
single-stranded DNA �ssDNA� fragments �11–16�. Further-
more, they deem the aforementioned modeling and simula-
tions of S-DNA as contradicting experimental data. Further-
ing this controversy, Cocco et al. �17� reexamine the
experimental data and argue in favor of S-DNA, Whitelam et
al. �18� do so based on kinetics, while Piana �19� observes
melting in simulations of short stretches of DNA. Maren-
duzzo et al. �20� study melting of stretched DNA with Monte
Carlo simulations.

In 1966 Poland and Scheraga �21� introduced a simple
statistical model for the melting of the dsDNA to two ssDNA
fragments, which has proved quite illuminating. In this
model, configurations of partially melted DNA are repre-
sented by alternating segments of dsDNA, and denatured
pairs of single strands forming “bubbles.” To make the
model analytically tractable, certain features of DNA such as
excluded volume, bending rigidity, and sequence inhomoge-
neity are typically left out. With the later inclusion of ex-

cluded volume effects, the model is well suited for charac-
terizing the nature of the melting transition, and its
universality. For comprehensive �but older� reviews see Refs.
�22,23�; some newer results are described in, e.g., Ref. �24�.
More recently, the phase diagram of the model has been
studied in the presence of a stretching force �25,26�. This is
important, since even the experiments disputing the forma-
tion of S-DNA at 65 pN do observe melting induced stretch-
ing at other forces �5,6�. The effect of bending rigidity is still
left out in the newer studies, making comparisons to experi-
ment questionable. The aim of this paper is to facilitate the
ongoing debate by providing a model that accounts for the
bending rigidity of the polymer �while leaving out excluded
volume effects�.

While we hope that our results and phase diagrams pro-
vide an additional perspective into this system, our main ac-
complishment is the extension of the transfer matrix method
used for a single persistent polymer �wormlike chain� to the
melting of a double-stranded polymer. The remainder of the
paper is an exposition of our method, and is organized as
follows. The generalized Poland-Scheraga model with three
types of bending rigidity is introduced in Sec. II A and the
corresponding three contributions to transfer matrices are de-
veloped in Sec. II B. As described in Sec. III, numerical re-
sults can be obtained by truncating the resulting transfer ma-
trices in a basis of spherical harmonics. In particular, we
provide phase diagrams �in force and temperature� and force-
extension curves, along with the native �double stranded�
fraction. We augment numerical results with physical expla-
nations of the observed trends. In particular, we provide a
rather general characterization of the slope and curvature of
the phase boundary which explains the potential reentrant
character of force induced melting. Various technical details
of the calculation are relegated to the Appendixes.

II. MODEL

A. Energetics

As illustrated in Fig. 1, a typical configuration of our
model polymer consists of an alternating sequence of native*sjrahi@mit.edu
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segments R, and locally molten pairs of strands forming a
bubble B. Successive segments are indexed by i, and contain
NR,i or 2NB,i monomers, respectively. In the original Poland-
Scheraga model �21�, the R segments were treated as stiff
“rods.” We treat these segments as semi-flexible chains, such
that the energy of a segment of NR,i monomers is given by

− �ER = �
j=1

NR−1

�JRr̂j · r̂ j+1 + r� j · f�� + r�NR
· f� + NR�R. �1�

Here, r� j = �r��r̂ j is the displacement of the jth “monomer” of
the segment, all of which have equal length, but may point in
any direction. The coupling JR parametrizes the cost of bend-

ing neighboring monomers. The force f� stretches the poly-
mer, and �R is an additional contribution to the energy dif-
ference between a native R unit compared to the molted
strands of B units. Note that �for each configuration, and
discounting bending costs� the net energy difference between
bound and unbound segments �the binding energy� is
kBT�JR+�R� per basepair. �For ease of notation, the index i
denoting the ith R segment has been dropped from all vari-
ables above.�

Similarly, the energy of a molten B region, described by

2NB,i units b� j and b� j� �for the two strands� is given by

− �EB� = �
j=1

NB−1 �JBb̂j · b̂j+1 + b� j ·
f�

2
� + �

j=1

NB−1 �JBb̂j� · b̂j+1�

+ b� j� ·
f�

2
� + b�NB

·
f�

2
+ b�NB

� ·
f�

2
. �2�

Again, the implicit index i numbering the ith B segment has
been omitted. The allowed configurations are constrained by

R� B=� j=1
NB b� j =� j=1

NB b� j�, to ensure that the two branches of the
bubble end at the same point. It is indeed this constraint
�emphasized by the primed EB� that allows distributing the

energy cost of stretching by the force f� symmetrically be-
tween the two branches.

Finally, there is a joint when the NR,ith �last� element of
the ith R segment branches into the first elements of the ith B
segment, to which we associate an energy

− �EJ,RB = JJr̂NR
· b̂1 + JJr̂NR

· b̂1� + �J. �3�

Similarly at the point where the ith B segment meets the �i
+1�th R segment, the energy is

− �EJ,BR = JJb̂NB
· r̂1 + JJb̂NB

� · r̂1 + �J. �4�

The overall energy of M alternating R-B segments of sizes
	NR,i ,NB,i
 is thus

�E��NR,1,NB,1,NR,2, . . . ,NB,M� = �
i=1

M

�ER,i + �EJ,RB,i + �EB,i�

+ �EJ,BR,i. �5�

�The above formula applies to configurations which start
with an R segment and end with a B segment. We expect the
results for long polymers to be independent of the choice of
boundary conditions.�

Computations are most easily performed in a grand ca-
nonical ensemble in which we sum over all possible polymer
lengths, with a chemical potential � /� per monomer. The
grand partition function is then calculated from

� = �
S2

� �
N

eN� �
	NR,i,NB,i
i=1

M

e−�E��NR,1,. . .,NB,M�, �6�

where N=�i=1
M NR,i+NB,i is the native polymer length. The

integrations are over all directions of the monomer vectors r̂,

b̂, and b̂�, provided that the bubble-closing constraints are
satisfied. This can be ensured by inserting � functions for
each bubble segment, as

���
j=1

NB,i

b� j − �
j=1

NB,i

b� j�� =� d3k�

�2��3ei��b� j−�b� j��·k� . �7�

B. Transfer matrix formulation

The one-dimensional character of the energy in Eq. �5�
suggests a transfer matrix approach to the problem. This is
indeed a standard tool for the study of semiflexible chains
�10,27–34�, but requires additional elaboration to treat the
bubbles. Below, we shall develop step by step the contribu-
tions from the two segment types, and the joints in between,
to the overall transfer matrix. The spherical harmonic basis is
commonly chosen �28–30� for the transfer matrix because in
this basis the Boltzmann weight eJt̂n·t̂n+1 is diagonal. The ei-
genvalues are 4�il�J�, where l is an integer �0	 l
�� and il
is the modified spherical Bessel function of the first kind of
order l. When the force in the Hamiltonian is nonzero, the
Boltzmann weight is no longer diagonal and the Gaunt coef-
ficients appear �see below and in Ref. �30��. For small J the
size and importance of the terms in the expansions can be
estimated using il�J��Jl+O�Jl+2�.

b

f f

JR JB

JJ
r

segment
bubble

(B)
molten

joint
(J)

segment

(R)
native

rod−like

FIG. 1. A typical polymer configuration of our model, as de-
picted here, consists of segments R, solid arrows, which we imagine
to be dsDNA, alternating with “bubbles” B made of two strands of
ssDNA �light arrows�. The two segment types have unit �monomer�
lengths �r�� or �b� �, and bending costs of JR or JB, respectively. There
is an additional bending constant JJ, at the branching points, and a
weight wJ=e�J for each joint. The energetic advantage �binding en-
ergy� of the R segments is represented by a weight wR=e�R per step.
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1. R segments

The Boltzmann weight in Eq. �6� involves a product of
exponentials, similar in form to plane waves. Such exponen-
tials can be expanded in a basis of spherical harmonics and
Bessel functions, which then allows the integrations over the

orientations r̂, b̂, and b̂�. For example, integrating over the
unit vector r̂n of an R segment yields

�
S2

e¯+JRr̂n−1·r̂n+JRr̂n·r̂n+1+r�n·f�+�R+�+¯d2r̂n

= �¯Y
�
*�r̂n−1���TR��,��Y��r̂n+1� ¯ � , �8�

where summation over repeated indices is implied. Greek
letters stand for elements of the angular momentum basis
�l ,m, e.g., � stands for �l� ,m��, and the transfer matrix ele-
ments are

�TR��,� = �4��2C�,�̄,i��JR�i��f���r���Y

*� f̂�wRz . �9�

Here, i� is the modified spherical Bessel function of the first
kind of order l�; C�,�̄,��S2Y��r̂�Y

�
*�r̂�Y�r̂�d2r̂ is closely

related to tabulated Gaunt coefficients, which can be ex-
pressed in terms of Wigner 3j symbols, see Appendix A and
each unit of an R segment carrier a fugacity z=e�, and the
binding weight wR=e�R defined earlier. To make the notation
uniform and simple, a bar placed over an index of C, e.g.,
C�,�̄,, indicates that the corresponding spherical harmonic
under the integral shall be complex conjugated. The repeated
 index implies a �finite� sum. The expression simplifies if

the force f� is chosen to point along the ẑ direction, in which
case �TR��,���m�,m�

. Note that the transfer matrix is asym-
metric, as we have included i��JR�, but not i��JR� to avoid
double counting.

2. B segments

A similar computation for the two bubble strands yields
two transfer matrices. These must be combined into one ma-
trix to be usable in the later steps. Thus, the basis elements
�l ,m, �l� ,m� are combined into one product basis element
�l ,m � �l� ,m� with one-letter abbreviation �̃��� ,���
= ��l� ,m�� , �l�� ,m����, and

� �
S2

d3k�

�2��3

d2b̂n

d2b̂n�

e¯+JBb̂n−1·b̂n+JBb̂n·b̂n+1+b�n·f�/2+ib�n·k�+¯

e¯+JBb̂n−1� ·b̂n�+JBb̂n�·b̂n+1� +b�n�·f�/2−ib�n�·k�+¯
z

=� d3k�

�2��3

�¯Y
�
*�b̂n−1� � �

�¯Y
��
* �b̂n−1� � � �

�TB�k����̃,�̃
��Y��b̂n+1� ¯ �

��Y���b̂n+1� � ¯ �
,

�10�

where

�TB�k����̃,�̃ = z� Y��b̂�eb� ·f�/2+ib� ·k�Y
�
*�b̂��4��i��JB�d2b̂

�� Y���b̂��eb��·f�/2−ib��·k�Y
��
* �b̂���4��i���JB�d2b̂�.

�11�

This transfer matrix is, in general, very big. If the spheri-
cal harmonic basis elements are cut off at some lmax for nu-
merical evaluation, there are �lmax+1�2 basis elements to con-
sider since m� 	−l , . . . , l
 for each 0	 l	 lmax. This means
that there are ��lmax+1�2�2 product basis elements, which is
the number of rows or columns of the transfer matrix TB�k��!
With a little trick this big matrix can be reduced to block
diagonal form with the biggest submatrix having size �lmax
+1�2.

Consider the first integral in Eq. �11� and let v� = ik� + f� /2
indicate the vector in the exponent. One can rotate the com-
plex vector v� into the ẑ direction, such that

�4�� � Y��b̂�eb� ·v�Y
�
*�b̂�i��JB�d2b̂

= �4��D�,��� Y��b̂�eb� ·�v� �ẑY
�
*�b̂�i��JB�d2b̂�D�,�

−1

= �4��2D�,��C�,�̄,i��JB�i��v� ��b� ��Y

*�ẑ��D�,�

−1 , �12�

where D�� ,� ,0� is the rotation matrix �Wigner-D matrix or
Wigner-D function� for quantum-mechanical angular mo-
mentum states. The spherical coordinate angles � �from the z
axis� and � �from the x axis� are the angles by which the ẑ
direction rotates in the v� direction. The rotation matrices are
usually parametrized by Euler angles. The first Euler angle
corresponds to �, the second to �, and the third to zero.
Since v� is complex, the angles of rotation are complex and
�v� �, which is the usual Euclidean norm of v� , is also complex,

as �v� �2�v� ·v� = f2 /4−k2+ ik� · f�. Note that i��JB� in the first line
can be replaced by i��JB� because i� only depends on l�

while D only mixes states with the same total angular mo-
menta, i.e., D�,���l�,l�

. Although the dependence on k� is
now both in D as well as in i, the problem is computation-
ally much simpler since C�,�̄,Y


*�ẑ���m�,m�

.

3. Joints

Similar manipulations lead to transfer matrices at the
branching points of

�TJ,RB��,�̃ = �4��3C�,,�̄C�̄,�̄�,�i��f���r���Y

*� f̂�

� i��JJ�i���JJ�wRwJz �13�

and

�TJ,BR��̃,� = �4��2C�̄,�̄�,�C�,,�̄i��f���r���Y

*� f̂�

�
i��JJ�i���JJ�

i��JB�i���JB�
i��JR�wRwJz . �14�

Once more the lack of symmetry between the two cases re-
flects our choice of including the bending energy from the
next �but not the previous� segment in the transfer matrix.
The absence of the joint energy JJ greatly simplifies the
problem, as the R and B segments can then be treated inde-
pendently. This happens because i��0�=0 unless l�=0.
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Combining these expressions, we can express the partition
function � in Eq. �6� in terms of the transfer matrices �the
irrelevant prefactors have been omitted�, as

� � � �
M=1

� ���
i=0

�

TR
i �TJ,RB�� d3k�

�2��3�
i=2

�

TB
i �TJ,BR�M�

0,0

= � �RTJ,RB�BTJ,BR

1 − �RTJ,RB�BTJ,BR
�

0,0
, �15�

where

�R = �1 − TR�−1 �16�

and

�B =� d3k�

�2��3

TB�k��2

1 − TB�k��
. �17�

III. RESULTS

In the grand canonical ensemble the average length of the
polymer is given by �N=�� ln���=z�z ln���. We are inter-
ested in the limit of very long polymers, where �N→�. This
limit is obtained for a specific choice of the fugacity z=e�,
such that we have the following.

�1� There are infinitely many repetitions of native �R� and
molten �B� segments. This occurs for a value of z such that
the largest eigenvalue of ��RTJ,RB�BTJ,BR��z� equals 1.

�2� The size of an individual bubble diverges. In this case
the singularity arises from �z�B�z�.

�3� The hypothetical possibility of an infinitely long na-
tive �R� segment does not arise, as �z�R�z� only diverges for
values of z that already cause one of the previous two cases
to occur.

As in the Poland-Scheraga model �21�, case �1� corre-
sponds to a partially melted double strand �mixed phase of R
and B segments�, while case �2� corresponds to a fully
melted state comprised of one bubble �bubble phase�.

A. Phase diagram

A phase transition between the two phases occurs when
there are both infinitely many repetitions of R and B seg-
ments and the average bubble size diverges. Since our model
has six parameters, we have to select appropriate subspaces
for the display of phase diagrams. We choose to regard the
bending energies JR, JB, JJ, and the joint Boltzmann weight
wJ=e�J as parameters, and display the phase diagrams as a
function of the force f and the dimensionless energy �R
=ln�wR�. The latter may be regarded as a stand-in for an
inverse temperature, since it is related to an actual energy
after division by kBT. �As discussed following Eq. �1�, nega-
tive values of �R�f� do not pose a problem, as the actual
binding energy is kBT�JR+�R�.�

Some typical phase boundaries �R�f� are presented in Fig.
2. We used the MATHEMATICA software package on an Intel
Pentium 3 GHz desktop computer to obtain the phase dia-
grams, each of which took a few hours of computational time
when we included partial waves up to l=1 in the bubble �B�

partition functions and l=5 in the native �R� partition func-
tions. It should be possible to reduce the computational time
significantly by using more appropriate software. The trun-
cation of the transfer matrices at these partial waves was
justified considering the small bending parameters chosen for
the bubbles and the joints.

Each solid curve depicts the phase boundary for a particu-
lar choice of parameters. All curves correspond to rather stiff
R segments with JR=5.0, but for different choices of the
bending bending parameters JB and JJ. The upper portion of
each figure corresponds to the partially melted native state,
which contains both R and B segments. There is no native R
segment left in the lower portion, and the polymer is a single
bubble below the phase transition line. The lowest curve in
the top figure �red in the online version� corresponds to no
bending in the bubble or vertex; JB=JJ=0. As we increase JB
to larger values of 0.05 and 0.1 in the top figure �green and
cyan, online�, the bubble phase becomes more stable. �The
phase boundary moves up as indicated by the arrow.� If we
now fix JB=0.05, and increase JJ to values of 0.05 and 0.1 in
the bottom figure �blue and brown online� we find that �R�f�
moves down, as indicated by the arrow. The mixed phase is
stabilized by stiffening the joints between R and B segments.
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FIG. 2. �Color online� The phase boundaries �R�f� separate the
partially melted R-B phase �above the line� from the fully melted
bubble phase �below the line�, for various combinations of JB and
JJ. Top: The bubble stiffness JB is increased. Bottom: The joint
stiffness JJ is increased. In both plots, the arrow indicates the direc-
tion in which the phase boundary moves with increase of the rel-

evant parameter. In all curves �r��=1.0, �b� �=1.7, JR=5.0, and �J

=1.0.
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Several features of these phase diagrams are now commented
on in more detail.

1. Explanation of the trends in phase diagrams

With our choice of parameters, increasing the value of any
stiffness parameter J, makes the corresponding segment �or
joint� more favorable. This is because the corresponding
Boltzmann weights are monotonically increasing functions
of J �as are the modified spherical Bessel functions i��J��.
For example, for a bubble segment the overall weight in-
creases with JB, despite the fact that there are fewer configu-
rations �and hence reduced� entropy for the stiffened and
stretched bubble. These trends are further magnified at larger
force as the stretched segments gain even more weight by
aligning to the force, as can be easily seen in Fig. 2.

2. Reentrance & the phase boundary at low and high forces

An interesting feature of the phase boundary in Fig. 2 is
its reentrance, namely, for certain choices of �R
�−0.8
�R
−0.2� the mixed R-B phase is stable at interme-
diate values of the force, but melts at both weak and strong
force. This reentrance is also present in another model of
denaturation which incorporates excluded volume effects in
the bubbles, but no bending rigidity in the bubbles �25�.

This feature can be explained by examining the limiting
behaviors of the phase boundary at small and large f . For
large f , the polymer �whether in native or denatured state� is
stretched along the direction of the force. The contribution
from entropy is relatively small in this limit, and one can
estimate the location of the phase boundary by comparison
of energies: The energy of a fully stretched rod segment is
JR+�R+ f �r�� per base pair. If the two strands are separated the

energy changes to 2JB+ f �b� �. The transition occurs for �R

�2JB−JR+ ��b� �−�r� � �f , which has a positive slope since B
strands have longer monomers and are favored by the force.

As shown in Appendix B, this argument can be made
more rigorous and extended to all cases where the contribu-
tion from the joints can be ignored. In such cases the slope of
the phase boundary can be expressed exactly by � f�R
= �LB / �NB− �LR / �NR, where �LX / �NX denotes the aver-
age length per monomer, calculated for each segment type �B
segment or R segment� separately at the particular point on
the phase transition line. All average segment extensions are
computed for the pure segment using the chemical potential
and force at the transition in the partition function of the
segment type. So, although at critical force and chemical
potential the total length of a pure bubble is infinite, its
length per monomer is, of course, finite and is plugged into
this expression. The total length of a pure native rodlike
segment is finite even at phase transition and is also divided
by the number of monomers and plugged in.

At zero force, the average end-to-end extension of each
segment �LX is zero by symmetry. The extension for small f
is linear, with a force constant �susceptibility� that is easily
related to the variance of the end-to-end extension at f =0.
Since the change in free energy is proportional to f2, the
phase boundary is also quadratic in this limit. In the absence
of joint stiffness, the curvature of the transition line at f =0

can be related to the difference in susceptibilities by � f
2�R

= �LB
2c / �NB− �LR

2c / �NR, see Appendix B for a derivation.
Here, �LX

2c / �NX denotes the variance in length of rods or
bubbles per monomer, computed for one rod segment or one
bubble segment subject to the same fugacity and force as for
the whole molecule. Since it is easier to rotate and align the
more rigid R segments in the direction of the force, their gain
from the force is larger, and small force favors the native
double-stranded phase.

The reentrance in the phase diagram of Ref. �25�, men-
tioned in the first paragraph of this subsection, can be ex-
plained with these expressions as well. In this paper different
behaviors are obtained as a function of a parameter A, which
determines how statistically favored joints are. They observe
a reentrant phase diagram for A=0.01 �disfavoring joints� but
not for A=1 �many joints�. The variance per monomer in the
lengths of the bubbles is roughly constant ��LB

2c� �NB as in
a random walk�, but for stiff rods the variance grows as the
average size ��LR

2c� �NR2 as in a directed walk�. For small
A, there are few joints and longer rods just after the phase
transition into the mixed bubble-rod phase, making the vari-
ance per monomer large. According to the above formula for
� f

2�R this leads to reentrance. Excluded volume effects are
relevant, and modify the nature of the phase transition. How-
ever, they do not qualitatively change our arguments regard-
ing the existence of reentrance, although the precise slope/
curvature may be different.

Williams et al. experimentally observe �Fig. 5 of Ref.
�11�� a reentrance in the phase boundary when they fit their
data to a simple model. Unfortunately, the area of interest is
merely extrapolated and the transition is not probed at high
enough temperatures and low forces ��90° � to unambigu-
ously verify reentrance.

Investigating models of DNA, which include forces that
pull the two strands of DNA apart at the same end of the
molecule, investigators have observed reentrance in the un-
zipping phase diagram �35–37�: At low temperatures �com-
pared to the force times the segment length� the force
straightens the two single strands, they have no entropic ad-
vantage over the bound native strand, thus higher forces or
much higher temperatures are needed for melting; at high
temperatures �relative to the force� the two single strands
have the entropic advantage and pulling the strands facili-
tates melting. This reentrance, which is caused by a compe-
tition between entropy and energy, is unrelated to the one
described here, which stems from a competition between
susceptibilities and energetic advantages due to different
monomer lengths.

B. Force-extension isotherms

An important probe of phase behavior comes from the
force-extension curves, in which the end-to-end distance of
the polymer is measured as a function of increasing force.
Without loss of generality and to simplify calculations, these
curves are obtained for JB=JJ=0 �with JR=5.0, �J=1.0�. For
comparison, we also plot the curves corresponding to the
pure wormlike chain �WLC� model in black �containing only
R segments for wJ=0�. The plotted “extension” is the aver-
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age length along the force direction, made intensive and di-
mensionless by dividing by the number of monomers �N,
and the monomer length �r�� of the R segment, i.e.,

X =
�Lz

�N�r��
=

� f�

���
= −

d

df
��ln z���=�. �18�

The two panels in Fig. 3 were selected to correspond to
parameters with �top� and without �bottom� reentrant melt-
ing. �Consider horizontal lines in Fig. 2 for �R=−0.4 and
�R=1.0, respectively.� In both cases, the force-extension
curves for the double-stranded polymer track the behavior of
the wormlike chain closely in the mixed R-B phase, but de-
viate significantly in the denatured phases; most pro-
nouncedly for the reentrant transition.

As mentioned earlier, current experiments indicate that
the WLC model describes the extension of DNA accurately
for small applied forces, but fails at large forces due to the
appearance of an over-stretched region. In Fig. 4 we probe
the corresponding region in more detail for our model, ex-
ploring the effect of bending rigidities �for �R=1.0 with a
single transition�. The top panel depicts the effect of increas-
ing the bubble stiffness JB, which makes the transition region

appear sharper. Increasing the joint stiffness JJ �bottom
panel� has the opposite effect. An interesting feature of the
bottom panel is that the trends in X�f� are not monotonic in
JJ, decreasing the extension for weaker force, and increasing
it for larger force, leading to a crossing point in between. The
reader should note that we have taken �J=1.0 in all curves,
making the joints favorable and common. This choice is
made to exaggerate the effect of the joint bending for dis-
play, as well as to broaden the phase transition in Fig. 4, thus
highlighting the features of our model. A more realistic
value, namely, �J small or negative, gives qualitatively simi-
lar results.

C. �: Native (R) fraction

Figure 3 also includes the native fraction � as a function
of f , depicted by the dashed curves. This is defined as the
fractional amount of R segments in the polymer, which can
be computed from

� �
�NR
�N

=
wR�wR

�

z�z�
. �19�

Note that � goes to zero continuously on approaching the
bubble phase, underscoring the second order nature of the
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FIG. 3. �Color online� Comparison of the extension curves X
defined in �18� for the polymer model investigated in this article
�red solid line with kinks� to the wormlike chain �black solid line
without kinks�. The top panel corresponds to a case where melting
is reentrant ��R=−0.4�, while there is a single denaturation transi-
tion in the bottom panel for �R=1.0 �see Fig. 2�. The fraction of
native �double stranded� polymer ���Nr / �N is indicated by

dashed lines. All curves correspond to JB=JJ=0, �r��=1.0, �b� �=1.7,
JR=5.0, and �J=1.0 for the double strands.
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FIG. 4. �Color online� Detailed view of the dimensionless ex-
tension X= �Lz / �N�r�� as a function of the force f , close to the phase
transition, for various combinations of JB and JJ. Top: The bubble
stiffness JB is increased. Bottom: The joint stiffness JJ is increased.
In both plots, the arrows indicate the direction in which the phase
boundary moves with increase of the relevant parameter. In all

curves �r��=1.0, �b� �=1.7, JR=5.0, and �J=1.0.
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phase transition. It approaches zero rapidly, but in a linear
fashion. This is because the phase transition in our model
belongs to the same universality class as the classic Poland-
Scheraga model �21�. The addition of bending rigidity is ir-
relevant close to the phase transition, and excluded volume
effects �which do modify the universality �24,25�� are not
included in our model.

D. Persistence lengths

The stiffness parameters JR and JB can be used to compute
the persistence lengths of the respective segment types,
which can be connected to experimental data. B-DNA is
known to have a persistence length of 50 nm �1,38,39� and
single-stranded DNA a persistence length of 0.7–2 nm
�3,6,40,41�. The persistence length l is defined as the char-
acteristic length scale, which is associated with the decay of
the tangent-tangent correlations

�t̂�0� · t̂�n� � e−nt/l, �20�

where t� stands either for a rod- or a bubble-type monomer
and has length t. For the discrete persistent chain �DPC�
Hamiltonian used in Sec. II, −�E=�Jt̂i · t̂i+n, the persistence
length can be computed exactly,

l =
t

ln�i0�J�/i1�J��
. �21�

In the limit where the stiffness J is small, such as in the
bubble segments, the persistence length approaches l
→ t / ln�3 /J�, and in the opposite limit, i.e., for the stiff rod-
like segments, one recovers the expression for the persis-
tence length of the wormlike chain �WLC�, l→ tJ.

The ratios of the experimental persistence lengths of
B-DNA to ssDNA range from 25 to 71. Considering that in
our calculations the bubble segments are 1.7 times longer
than the rodlike native segments, the ratios of persistence
lengths tested here range from 9.0 to infinity.

IV. DISCUSSION

We have introduced a formalism to address the role of
bending rigidity in the denaturation of double-stranded poly-
mers, DNA providing a prime example. There has been some
controversy on interpreting experimental results for melting
of DNA, or its denaturation by force. There is strong theo-
retical indication that the melting of a uniform double-
stranded polymer should be discontinuous due to excluded
volume effects �24�. The discontinuity may be masked in
experiments because of the inherent inhomogeneity of DNA
�26,42�, or by finite-size effects. The rigidity of DNA should
play an important role in the latter, as longer persistent seg-
ments are less susceptible to fluctuations and excluded-
volume effects. It is thus necessary that comparison of mod-
els to experiment should include the effect of rigidity, as we
have attempted here. More generally, our formalism can be
extended to decribe the unraveling of any number of strands,
for example from 1 to 3 in the case of collagen �43,44�.
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APPENDIX A: GAUNT COEFFICIENTS

The Gaunt coefficients are defined as

C�,�, � �
S2

Y��r̂�Y��r̂�Y�r̂�d2r̂ , �A1�

where Y� is the spherical harmonic with indices �l� ,m��. If a
bar is put on top of an index of C, the corresponding spheri-
cal harmonic in the integrand is complex conjugated. The
relation

Y
l,m
* = �− 1�mYl,−m, �A2�

can be used to relate a modified Gaunt coefficient with
barred indices to one without barred indices. A well-known
expression for the Gaunt coefficient in terms of Wigner 3j
symbols is �45�

C�,�, =��2l� + 1��2l� + 1��2l + 1�
4�

�l� l� l

0 0 0
�

�� l� l� l

m� m� m
� . �A3�

Using the properties of the Wigner 3j symbols one can re-
strict and simplify the sums appearing in the partition func-
tion.

APPENDIX B: SLOPE/CURVATURE OF THE PHASE
BOUNDARY

When the joint stiffness JJ vanishes, the partition function
matrices �R and �B in Eqs. �16� and �17� reduce to real-
valued functions. As discussed in Sec. III, two conditions
have to be met at the phase transition, �B�R=1 and �z�B
=�, where in the former equation all multiplicative factors
from the joints are absorbed in either of the two partition
functions. Together, these two conditions set the value of �
=ln�z� and �R=ln�w� along the phase boundary. All manipu-
lations below are then performed as the boundary point is
changed by varying the force f .

Noting that, the first condition is equivalent to

ln �B��, f� + ln �R��, f ,�R� = 0, �B1�

its variations are obtained, by taking one total derivative with
respect to f , as

0 = � f ln �B + �� ln �B� f� + � f ln �R + �� ln �R� f�

+ ��R
ln �B� f�R

= �LB + �NB� f� + �LR + �NR�� f� + � f�R� . �B2�

From the second condition we get

�� f�����B=� = −
� f���B

�����B
= −

�LBNB
�NB

2
. �B3�

But because the condition ���B=� of infinite bubble length
is the same as �� ln �B=�, one can equivalently express
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�� f���� ln �B=� = −
� f�� ln �B

���� ln �B
= −

�LBNBc

�NB
2c

, �B4�

where the subscript “c” indicates a cumulant in place of a
moment. From combining both expressions it follows that

�� f�����B=� = −
�LB
�NB

. �B5�

Plugging this result into Eq. �B2�, one obtains

� f�R =
�LB
�NB

−
�LR
�NR

. �B6�

Note that at zero force all averages with only one LB or LR
are zero by symmetry. Taking another total derivative of Eq.

�B2�, and dropping the terms that vanish for this reason, one
finds that at f =0

0 = �LB
2c + �NB� f

2� + �LR
2c + �NR�� f

2� + � f
2�R� . �B7�

Taking another derivative of � in Eq. �B5� one finds �for f
=0�

�� f
2�����B=� = −

�LB
2

�NB
. �B8�

Combining Eqs. �B7� and �B8� the desired curvature at f
=0 is obtained as

� f
2�R =

�LB
2c

�NB
−

�LR
2c

�NR
. �B9�
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